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Abstract-In this article, the effects of thickness and torus radii ratio on the axisymmetric circumferential natural
vibrations of freely supported, hollowed tori are determined. The solutions for eigenfrequencies and eigenmodes
are effected by finite difference approximations of the basic equations of elastic motion, written in terms of a set
of toroidal coordinates. The results agree quite well with the special cases of toroidal membranes and infinite
circular cylinders.

1. INTRODUCfION

THE hollowed torus is utilized in many areas of science and engineering, for example, as
space vehicle liquid storage containers, and nuclear particle accelerators. The toroidal
geometrical shape is also being considered by N.A.SA., in their design ofinflatable manned
rotating spacecraft [1]. Thicknesses of tori in most applications are small enough to permit
shell theory analyses to be performed; however, it is always of interest to determine the
effect of thickness on the vibrations ofshells. This has been done extensively for the cylinder
[2,3], by means of the exact equations oflinear elasticity.

In this paper, one of the two classes of axisymmetric motion which exist for the torus is
examined, using an expansion of the basic equation of elastic motion into toroidal co
ordinates. The effects of thickness and the radii ratio upon the eigenfrequencies of cir
cumferential free oscillation of the freely supported, hollowed torus is determined, and
convergence plots of frequency parameter against fineness ofdifference mesh are presented
as a point ofmathematical interest. An excellent check against the solution, contained in [4],
for the eigenfrequencies and eigenmodes of axisymmetric circumferential motion of a free
toroidal membrane was made by letting the shell thickness in the present analysis become
small. Further, the present results reduce to the classical longitudinal free vibrations of
an infinite cylinder as the radii ratio approaches zero.

2. PROBLEM FORMULATION

Figure 1 depicts the nondimensionalized geometry of the hollowed torus. The radii
R, Rb and Ru are respectively equal to the polar coordinate r, the inner radius rh and the
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FIG. 1. Nondimensional geometry of the thick toroidal shell.

outer radius r Il , all divided by the average radius, ro (rI + rIJ/2. The torus radii ratio, y,
is taken to be ro divided by the distance between the axis ofsymmetry and the center ofany
cross-section.

In [5], the basic vector equation of motion of an elastic continuum,

(11. +2fl)V(V . u) - flV x (V x u) po, (2.1)

is expanded into three component equations in toroidal coordinates. In (2.1), u is the
displacement vector, p is the density, and 11. and fl are Lame's elastic constants of the
isotropic material.

For the case of axisymmetric motion, i.e. motion symmetric with respect to the axis
ofsymmetry ofFig. 1, and hence independent of the circumferential angle l/J, the governing
differential equations and stresses split into two completely independent classes, called the
polar and circumferential problems. The polar problem, involving radial (U,) and tangential
(un) displacements in meridional planes, has the three normal stresses, plus the shear in these
planes, as its stresses, and there are two governing second order partial differential equations
in the two displacements. This problem has been solved [6] by a perturbation technique
for the case of a static torus loaded by internal and external pressures. The polar free vibra
tions of a freely supported, hollowed torus were recently studied by the authors [7]. An
early attempt at this problem by Federhofer [8] contains results valid for very thin shells
with small radii ratios.

The present paper is concerned with the other, lesser-known class of axisymmetric
free vibration of a freely supported torus, involving purely circumferential motion. In this
type of vibration, all points move only in the l/J-direction (Fig. 1) via displacements uti>

perpendicular to the meridional planes.
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(2.2)

(2.3.1 )

The third of the three partial differential equations, which result upon expansion of (2.1),
contains only the circumferential displacement and its derivatives with respect to Rand e
in the case ofaxisymmetry, and may be written as

a
2

u</> 1 a
2

u</> [1+2YRcose Jau</>
aR2 +R2 ae2 + R(l +yR cos e) aR

_ [ y sin e l au</> _ [ y2 l u + '1'2 U - 0
R(l+yRcose)J ae (l+yRcose)iJ </> </>-

in which

Pr2w 2
'1'2 = _0_

)J.

The circumferential displacement u</> has been nondimensionalized, and time elimi
minated, by the relation

u</>(r, e, t) = roU</>(R, e) cos wt

Here, as usual, w is the natural circular frequency offree vibration, and t is time.
Of the six possible stresses, only two exist in the present axisymmetric circumferential

problem. They are the shears in the r-cfJ and e-cfJ planes:

[
- y)J. cos e ] au</>

(Jr</> = 1+yR cos e U</>+)J. aR

[
y)J. sin e ] )J. au</>

(J8</>= l+yRcose U</>+/iaiJ (2.3.2)

The boundary stresses which vanish in general at R = R[ and Rll for natural vibrations
of hollowed tori with free surfaces are (J", (Jre, and (Jr</>' The axisymmetric boundary condi
tions are compatible; i.e. in the polar problem there are two second order partial differential
equations in two variables (Ur and U8) with four boundary conditions (viz. (Jrr and (Jr8
vanish at R = R[ and Rll). In the present circumferential problem there are two boundary
conditions ((Jr</> vanishes at R[ and Rll ) to go with the second order partial differential
equation (2.2) in U</>.

It is noted that equation (2.2) is elliptic and that the circumferential problem posed here
is of the mixed boundary value type. Because of the complexity of the governing equation,
the solution to the problem is found by finite differences. This solution is carried out in
terms of displacements to eliminate the necessity of satisfying compatibility conditions.

3. FINITE DIFFERENCE APPROXIMATIONS AND COMPUTER SOLUTION

In [5] it is proved that all solutions of the exact equations, of which (2.2) is a special
case, are such that either

(a) Urand U </> are even, and U8 is odd with respect to e = 0 and n, or
(b) Urand U </> are odd, and U8 is even with respect to e = 0 and 7t.

Type (a) will be called symmetric vibrations and type (b), a.ltisymmetric vibrations. Since
the above forms comprise all possible solutions, only the upper half of the annulus in the
R-e plane need be considered in drawing the finite difference mesh. When a displacement
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at (R, B) below the rays B 0 and n is needed in a difference equation, its coefficient is
multiplied by plus or minus the displacement at (R,2n-B) within the semiannulus. It
should be noted that the signs are dependent upon whether the vibrations are of type (a) or
(b).

FIG. 2. Mesh point notation.

Simple central difference formulae are used to approximate the derivatives involved
in (2.2) and (2.3.1). In the notation ofFig. 2, equation (2.2) becomes

[
1+2yRiCOSOi J[U4>k- U4>i]+[U4>k- 2U4>i+ U4>J]_[ 1'2 Ju .

Ri(l +1'Ri cos Bi) 2h h2 (1 +1'Ri cos Bi)2 4>1
(3.1)

+[U4>i+I-2~4>;+U4>i-lJ_[ 1'sinBi ][U4>i+l- U4>i-l]+'I'2 U4>i = 0,
Ri ~i Ri(1+1'R j cos Bi) 2~j

in which h and ~i are, respectively, the radial and tangential mesh increments divided by roo
When (J'4> from (2.3.1) is written in finite difference form and equated to zero on the free

surfaces R = RI and Rn , the difference approximations to the boundary conditions result.

[ U4>k- U4>iJ_[. l' cos 0i Ju. 0.. at Y. = R1 and Rn (32)
2h 1+yRicoS(}i ",I ''I .

The difference equation of motion (3.1) is applied to the nodal points on the interior
of the region, and also to the boundary nodes, but with modifications. It must be insured
that there is no traction on the free surface. Application of (3.1) to the boundary nodes
yields fictitious nodal displacements of points lying outside the semiannular cross section.
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The values ofthese displacements (viz. U</>j on R = R" and U</>k on R = Rn) are determined
from (3.2) in terms of displacements of nodes within and on the boundaries of the cross
section. This procedure yields two additional difference equations which are applicable to
the boundary nodes.

Computer programs were written which traverse the finite difference mesh, generating
the equations of motion at each of the nodes by calculating the non-zero coefficients. These
equations form a system which may be written as

[A] [U] - ,¥2[U] = 0 (3.3)

which constitutes a standard eigenvalue problem. The matrix [A] is the coefficient matrix,
and [U] is the column vector containing the circumferential nodal displacements, or the
U</>i' To solve the resulting equation IA - '11 2II = 0, the QR Transformation of Francis [9],
which is programmed for SHARE by Imad and Van Ness [10], is used.

After the eigenfrequencies '112 are determined, the mode shapes, or eigenvectors [U],
follow easily for any mode number. A node is selected to have a displacement of one unit.
Then the corresponding column is shifted to the right side of (3.3), forming a non-homo
geneous set of linear algebraic equations. The solution of this system yields the displace
ment ratios, and it is found by Jordan elimination with no difficulty due to the strength
of the principal diagonal of [A].

4. RESULTS OF THE ANALYSIS

The errors involved in the finite difference analysis are known to be of the order of the
squares of the mesh increments. Since an exact elasticity approach is used, these difference
approximation errors are the only ones that exist. The present method of attack was
employed in lieu ofa shell approach, in which errors are inherent in the governing differen
tial equations and in which the total error might have been greatly compounded for tori
of appreciable thicknesses.

Two very good limiting case checks are available for the out-of-plane modes of this
paper. One is the toroidal membrane, which the torus approaches when its thickness goes
to zero (i.e. when R1 approaches 1). The solution for the free vibrations of a toroidal mem
brane was obtained by Liepins [4]. One set of modes of his paper dealt with purely circum
ferential motion. The thickness was taken to be small in order to compare results for the
eigenfrequency with those of [4]. For a toroidal shell having R, = 0'99, which represents
an average radius to thickness ratio of 50, the 24 values of '11 2 obtained for various radii
ratios and mode numbers differ from the solution based on membrane theory by an
average of 1'90%. The mode shapes also show very good agreement when compared to
Liepins' curves.

The second limiting case is obtained by letting the radii ratio l' become zero, which
results in an infinite cylinder. The solution to purely axial free vibration of such a shell was
found by Rayleigh [11] using shell theory. The solution for the eigenfrequency of a torus
with l' = 0 and R, = 0,99, executing symmetric vibrations, differs from the classical
solution by 0'0, 0'40, 0'97,1'75, and 2·75 % for the first five modes respectively. The classical
mode shapes are harmonic in (), and the present analysis yielded near-perfect cosine
(n()), n = 1-5, curves as the first five mode shapes, for an additional check. Furthermore, a
mode with zero frequency was found whenever symmetric modes were examined. Analysis
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of the corresponding modal pattern showed that it represented the solution for U4> of
(l +yR cos ()/y, a rigid body turn ofthe torus about its axis of symmetry. Since the computer
was programmed to yield all solutions for the eigenfrequencies and eigenmodes, this
trivial solution was obtained even though it involved no elastic straining, and was an
excellent check.

Since the radial mesh increment, h, could be made small by varying the torus thickness,
and since the number ofequations used to obtain the solution was limited by both computer
space and time, three nodes were taken across the thickness in the radial direction. This kept
the nondimensional radial and tangential increments approximately the same. It was
thought that since the errors inherent in (3.1) and (3.2) are of order h2 and ~f, that keeping
the increments as nearly equal as possible would yield the best possible difference solution.
Several runs were then made with more radial nodes, and for the same number of tangential
mesh points, there was indeed very little change in the vibrations.

Convergence plots were then drawn which showed that the eigenfrequencies converged
when the tangential mesh increment, ~i' became smaller, i.e. when the number of sections
formed by the radial lines of the mesh increased. Three of these plots, for the first seven
symmetric modes oftori with RI = 0·9 and y = 0,0'3, and 0·75 are shown in Fig. 3. Figure 4
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FIG. 3. Convergence plot for circumferential symmetric free vibration of tori with ~ = 0·9 and y = O.
0,3, and 0·75.
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depicts a convergence plot of the seven lowest antisymmetric modes of a torus having
R, = 0·9 and y 0·75. From these curves and other convergence plots, it was seen that
18 or more sections gave a sufficiently fine difference mesh for examination of the effects
of other parameters upon the eigenfrequencies and eigenmodes of the lower free vibratory
patterns.

Figure 5 shows the first four eigenfrequencies plotted as a function of the torus radii ratio
y for R, 0,8,0'9, and 0·99. It is seen that there is a considerable increase in frequency as y
increases from zero to its maximum value (which is given in general by 1/(2 - RI», which
appears for all three thicknesses* considered. It is noted that the antisymmetric and
symmetric modes become more and more distinct as the torus deviates more and more
from the cylinder, i.e. as y gets farther from zero. This shows a definite effect of the cir
cumferential curvature on the vibratory modes. The symmetric frequencies are higher than
the antisymmetric ones, indicating that it is easier for sections to shear past each other
in horizontal than in vertical planes.

Figure 6 shows the effect of thickness on the eigenfrequencies of the first three modes
for both symmetric and antisymmetric modes, and for three values of y. It is seen that fre
quency increases with thickness. This is because a thicker shell is stiffer, requiring a higher
frequency to vibrate it in a given nodal pattern.
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==:.;-=.-.--;:: ----------
0.0
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FIG. 6. Frequency parameter vs. nondimensionallzed inner radius for symmetric and antisymmetric
modes, and for three values of y.

The first four mode shapes of the middle surface nodes of symmetric circumferential
vibration of a toroidal shell with y = 0·75 and R, = 0·99 are shown in Fig. 7. The corres
ponding curves for a cylindrical shell are cosine (nO), n = 1-4 (which were obtained with
y = 0), hence, the distortion caused by a considerable amount of circumferential curvature
can be seen.

* The nondimensional thickness is 2(1- R1). so that as R1 approaches l. the thickness approaches zero. The
inner radii R1 (}8. 0·9. and 0·99. therefore, correspond to average radius to thickness ratios of 2'5, 5. and 50,
respectively.
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FIG. 7. The first four circumferential symmetric free vibratory modes of a toroidal shell with R, = 0·99
and l' = 0·75.

The modal frequencies of polar motion [7J are dependent upon Poisson's ratio v,
whereas the present circumferential vibrations are dilatationless, and independent of v.
Both classes of vibration occur at high frequencies. For v = 0'3, the polar circular fre
quencies of [7J were compared with the present circumferential circular frequencies for
several thicknesses, and the two were seen to be interspersed, and of the same order of
magnitude for the lower modes examined.

Another result, discussed in more detail in [5J, is that the present elasticity theory de
monstrates that at any angle e, the node across the thickness at which the magnitude of the
Gaussian curvature is smallest tends to have the largest displacement. This is because the
Gaussian curvature is a measure of the net amount of curvature at a point, and curvature
is known to stiffen a shell.
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Resume-Dans eet article, les effets du rapport de I'epaisseur au rayon du tore sur les vibrations naturelles
circonferentieUes symetriques selon I'axe de tores creux, supportes librement sont determines. Les solutions
pour frequences propres et modes propres sont obtenues par des approximations adifference linie des equations de
base du mouvement elastique, posees d'apres un ensemble de coordonnees toroidales. Les resultats s'accordent
tres bien avec les cas speciaux des membranes toroidales et des cylindres circulaires inlinis.

Zusammenfassung--In dieser Arbeit wir der Einfluss von Dicke und und Ringhalbmesserverhiiltnis auf die axial
symmetrischen natiirlichen Umfangsschwingungen eines frei gesttitzten Torusringes bestimmt. Die Losungen der
Eigenfrequenzen und Eigensysteme werden durch begrenzte Differenz-Annaherungen der Grundgleiehung fUr
elastische Bewegung bestimmt, die in Toroidalkoordinaten ausgedrtickt sind. Die Resultate zeigen gute Oberein
stimmung mit den SpezialfaUen fUr Toroidalmembranen und fUr unendliche kreisfOrmige Zylinder.

A6c'fPllKT-B ,}Toll. CTaTHe Bl>lBe,lleHbl 3q,l!>eKTbl OTHoweHHli TOlIU{HHbI H PMHYCa Topyca Ha nOBe.uCHHe

ocecHMMeTpH'lHblX, KOlIbueBblX. HaTypHbIx KOlIe6aHHlt B CBo6o,llHO onepTblx. nOlIblX Topycax. PewcHHll

,lIlIll COOCTBeHHbIX 'laCTOT KOlIc6aHHll. H C06cTBeHHbIX q,OPM KOlIe6aHHll. ocYIUeCTBJIliCTCli c nOMOIUblO

KOHe'lHO pa3HocTHoro npH6JIHlICCHHll OCHOBHl>lX ypaBHcHHil. ynpyroro ,lIBHlKeHHll. onHcaHHoro B BH,lIe

CHCTeMbI TOpOMaJIbHl>lX KOOp):IHHaT. Pe3YJIbTaThI nO'ITH COrJlaCOBblBaIOTCli CO CneUHaJlbHbIMH CJIy'lallMH

TOpOH,lIaJlbHbIX MeM6paH H 6ecKOHe'lHblX KpyfJIbIX lUlJlHH,lIPOB.


